Course of Study: 6th-Grade STEM

Strand: Intro to Problem Solving and Teamwork: Paper Tension Line

 Learning Standard: MS-ETS1-2 - Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem. MS-ETS-1-4 - Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved 6-8.DT.1.d. Explain how optimization is the process of making a product as fully functional and effective as 	How Taught? - Students are guided through: <u>Structural</u> <u>Engineering and Paper Tension Line</u>
possible. 6-8.DT.1.f. Give examples of how trade-offs must occur when optimizing a design in order to maintain design requirements.	
Materials: <u>Structural Engineering and Paper Tension</u> <u>Line</u>	 How Assessed? Observations of students' abilities to collaborate Assessment and reflection on the success of a prototype design
	How Re-Taught? - Students refine their prototypes with teacher guidance throughout the activity

Strand: Steps of the Scientific Inquiry Process

Learning Standard: Nature of Science Grades 6-8 Scientific Inquiry, Practice and Applications - Apply knowledge of science content to real-world challenges. - Identify questions that can be answered through scientific investigations. - Design and conduct scientific investigations using appropriate safety techniques. - Analyze and interpret data. - Think critically and logically to connect evidence and explanations. - Communicate scientific procedures and explanations. 6.SP.1.d - Interpret Results: Draw logical conclusions from the data based on the original question 6.EE.9 - Represent and analyze quantitative relationships between dependent and independent variables. 6-8.ICT.3.a. Analyze and integrate textual, visual and quantitative information	How Taught? Scientific Inquiry presentation
Materials: Scientific Inquiry presentation	 How Assessed? Class discussions Completion of guided notes How Re-Taught? Revisited as students apply the inquiry process in experiments throughout the semester

Strand: Reaction Speed Experiment: Arm Length vs. Reaction Speed

Learning Standard: Nature of Science Grades 6-8 Scientific Inquiry, Practice and Applications - Apply knowledge of science content to real-world challenges. - Identify questions that can be answered through scientific investigations. - Design and conduct scientific investigations using appropriate safety techniques. - Analyze and interpret data. - Think critically and logically to connect evidence and explanations. - Communicate scientific procedures and explanations. 6.SP.1.d - Interpret Results: Draw logical conclusions from the data based on the original question 6-8.ICT.3.a. Analyze and integrate textual, visual and quantitative information	How Taught? <u>Arm Length vs. Reaction Speed Experiment</u> <u>Student experiment sheet</u> Group discussion - what were flaws in the experiment
Materials: <u>Arm Length vs. Reaction Speed Experiment</u>	How Assessed? - Student experiment sheet
Student experiment sheet	How Re-Taught? - Student teams share results and discuss flaws and ways to improve the experiment

Strand: Bottle Flip Experiment

 Learning Standard: Nature of Science Grades 6-8 Scientific Inquiry, Practice and Applications Apply knowledge of science content to real-world challenges. Identify questions that can be answered through scientific investigations. Design and conduct scientific investigations using appropriate safety techniques. Analyze and interpret data. Think critically and logically to connect evidence and explanations. Communicate scientific procedures and explanations. 6.SP.1.d - Interpret Results: Draw logical conclusions from the data based on the original question 6-8.ICT.3.a. Analyze and integrate textual, visual and quantitative information 	How Taught? <u>Bottle Flip Experiment Presentation</u> <u>Student experiment sheet</u> Group discussion - what were flaws in the experiment
Materials: Bottle Flip Experiment Presentation	How Assessed? - Student experiment sheet
Student experiment sheet	How Re-Taught? - Student teams share results and discuss flaws and ways to improve the experiment

Strand: Introduction to the Engineering Design Process

Learning Standard: DESIGNING TECHNOLOGICAL AND ENGINEERING SOLUTIONS USING SCIENCE CONCEPTS	How Taught? Engineering Design Process Presentation
 6-8.ST.1.b. Explore the advantages and disadvantages of widespread use, accessibility and reliance on technology in one's world. 6-8.ST.2.b. Explain the positive and negative impact the use of technology can have on personal, professional and community relationships 6-8.ST.3.c. Analyze how technological innovations and inventions can have multiple applications, both intended and unintended. 	
 6-8.DT.1.d. Explain how optimization is the process of making a product as fully functional and effective as possible. 6-8.DT.1.f. Give examples of how trade-offs must occur when optimizing a design in order to maintain design requirements. 6-8.DT.2.a. Apply a complete design process to solve an identified individual or community problem: research, develop, test, evaluate and present several possible solutions, and redesign to improve the solution. 6-8.DT.2.b. Describe how invention is a process of turning ideas and imagination into devices and systems 6-8.DT.2.c. Explain how innovation is the process of modifying an existing system or system element(s) to improve it 6-8.DT.2.d. Consider multiple factors, including criteria and constraints, (e.g., research, cost, time, materials, feedback, safety) to justify decisions when developing products and systems to solve problems. 6-8.DT.4.b. Analyze environments or products that are 	
examples of the application of the principles of universal or inclusive design.	
Materials: Engineering Design Process Presentation	How Assessed? - student note sheet completion - formative class discussions
<u>Student Note Sheet</u> <u>Kid Shark Tank video</u>	How Re-Taught? - Revisited as students apply the engineering design process throughout the semester

Strand: Engineering Design Process - Air Powered Rocket Design

 Learning Standard: Nature of Science Grades 6-8 (source pg. 10) Design and conduct scientific investigations using appropriate safety techniques. Use appropriate mathematics, tools and techniques to gather data and information. Analyze and interpret data. MS-ETS1-2 - Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem. MS-ETS1-3 - Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success. EE.9 - Represent and analyze quantitative relationships between dependent and independent variables. SP.1.b - Collect Data: Design and use a plan to collect appropriate data to answer a statistical question. SP.1.c - Analyze Data: Select appropriate graphical methods and numerical measures to analyze data 6.SP.1.d - Interpret Results: Draw logical conclusions from the data based on the original question 	How Taught? Rocket Slideshow https://blogs.nasa.gov/Rocketology/2015/07/09/ designing-a-rocket-in-six-easy-steps/ After testing, walk student through graphing data using spreadsheets
Materials: <u>Rocket Slideshow</u> <u>https://blogs.nasa.gov/Rocketology/2015/07/09/</u> <u>designing-a-rocket-in-six-easy-steps/</u>	How Assessed? - Accuracy of mass, length, and distance measurements - Graph and analyze data from various rocket designs
DIY Rocket landing video	 Draw conclusions of the ideal rocket design using data as evidence How Re-Taught? Student revisit graphing data in a future project

Strand: Lunar Hotel Engineering

Learning Standard: Next Gen Science Standards (NGSS) MS.Engineering	How Taught?
6-8:	Lunar hotel presentation
MS-ETS1-1 - Define the criteria and constraints of a	Design Assessment
design problem with sufficient precision to ensure a	Design Assessment
successful solution, taking into account relevant scientific	
principles and potential impacts on people and the natural	
environment that may limit possible solutions.	
MS-ETS1-2 - Evaluate competing design solutions using a	
systematic process to determine how well they meet the	
criteria and constraints of the problem.	
Nature of Science Grades 6-8 (source pg. 10)	
Scientific Inquiry, Practice and Applications	
- Apply knowledge of science content to real-world	
challenges.	
- Analyze and interpret data.	
- Develop descriptions, models, explanations and	
predictions.	
Obio's Cognitive Domanda for Science (ng. 12, table 2)	
Ohio's Cognitive Demands for Science (pg. 13, table 2) DESIGNING TECHNOLOGICAL AND ENGINEERING	
SOLUTIONS USING SCIENCE CONCEPTS	
6-8.DT.1.f. Give examples of how trade-offs must occur	
when optimizing a design in order to maintain design	
requirements.	
6-8.DT.2.b. Describe how invention is a process of turning	
ideas and imagination into devices and systems	
6-8.DT.2.c. Explain how innovation is the process of	
modifying an existing system or system element(s) to	
improve it	
6-8.DT.2.d. Consider multiple factors, including criteria and	
constraints, (e.g., research, cost, time, materials,	
feedback, safety) to justify decisions when developing	
products and systems to solve problems. 6-8.DT.3.c. Evaluate the effectiveness of the group's	
collaboration during the engineering design process and	
the contribution of the varying roles.	
Materials:	How Assessed?
Lunar hotel presentation	Design Assessment
Destruction of the second second	
Design Assessment	How Re-Taught?
	- Students are provided feedback throughout the
NASA resource link	design process to refine their prototypes

Strand: Journal on the Importance of Learning STEM and Practice Writing a Claim with Explanation

Learning Standard: W.6.1 Write arguments to support claims with clear reasons and relevant evidence. W.6.4 Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.	How Taught? Journal #1 Required or Optional STEM class
Materials: Journal #1 Required or Optional STEM class	How Assessed? - <u>Journal Rubric</u>
	How Re-Taught? - Students refine making a claim and evidence throughout the semester

Strand: Writing - Supporting a Claim - Journal on Esports in school

 Learning Standard: W.6.1 Write arguments to support claims with clear reasons and relevant evidence. W.6.4 Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience. 6-8.ST.1.b. Explore the advantages and disadvantages of widespread use, accessibility and reliance on technology in one's world. 6-8.ST.2.b. Explain the positive and negative impact the use of technology can have on personal, professional and community relationships 6-8.ST.3.c. Analyze how technological innovations and inventions can have multiple applications, both intended and unintended 	How Taught? - <u>Journal prompt and presentation</u> - Students are walked through the writing format of making a claim and providing evidence
Materials: Journal prompt and presentation	How Assessed? - <u>Journal Rubric</u> - Formative student discussions after writing

How Re-Taught?

- Students refine making a claim and evidence throughout the semester

Strand: 3D Design and Printing Using CAD

 Learning Standard: 6.NS.5 - Understand that positive and negative numbers are used together to describe quantities having opposite directions or values, use positive and negative numbers to represent quantities in real-world contexts 6-8.ICT.3.c. Create artifacts using digital learning tools and resources to demonstrate knowledge 6-8.DT.2.d. Consider multiple factors, including criteria and constraints, (e.g., research, cost, time, materials, feedback, safety) to justify decisions when developing products and systems to solve problems. 	How Taught? - Teacher guided instruction on basic modeling of 3D shapes in TinkerCad - Review of metric system and converting to millimeters in TinkerCad
Materials: <u>www.TinkerCad.com</u>	How Assessed? <u>3D printed Chromebook Clip</u> (assessment found in slide show)
3D printed Chromebook Clip	How Re-Taught? - Students are provided feedback on designs, make changes, and resubmit projects

Strand: 3D Printed Product Design and Investment Pitch

 Learning Standard: 6-8.DT.1.f. Give examples of how trade-offs must occur when optimizing a design in order to maintain design requirements. 6-8.DT.2.d. Consider multiple factors, including criteria and constraints, (e.g., research, cost, time, materials, feedback, safety) to justify decisions when developing products and systems to solve problems. 6-8.DT.4.c. Apply the design principle "form follows function" to develop a product 	 How Taught? Students receive previous instruction in TinkerCad 3D modeling Students are introduced to "investors" and "pitches" along with examples Students provided requirements: <u>Product</u> <u>pitch requirements</u>
Materials: <u>6th grade product pitch template</u>	How Assessed? Product pitch requirements
Product pitch requirements	How Re-Taught? - Students are provided feedback on their designs throughout the design process. - Students refine ideas based on feedback from the teacher

Strand: Rubber Band Lego Car

 Learning Standard: Ohio's Cognitive Demands for Science (pg. 13, table 2) DESIGNING TECHNOLOGICAL/ENGINEERING SOLUTIONS USING SCIENCE CONCEPTS Next Gen Science Standards (NGSS) MS.Engineering 6-8: MS-ETS1-1 - Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution MS-ETS1-2 - Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem. MS-ETS1-3 - Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success. 6-8.DT.1.d. Explain how optimization is the process of making a product as fully functional and effective as possible. 6-8.DT.1.f. Give examples of how trade-offs must occur when optimizing a design in order to maintain design requirements. 6-8.DT.2.a. Apply a complete design process to solve an identified individual or community problem: research, develop, test, evaluate and present several possible solutions, and redesign to improve the solution. 6-8.DT.2.c. Explain how innovation is the process of modifying an existing system or system element(s) to improve it 	How Taught? - Students are put in teams of 3-4 and assigned specific roles - Presentation, requirements, and constraints
Materials: Presentation, requirements, and constraints	 How Assessed? Students complete a reflection each day on their progress Formative assessment of students working in groups Students refine their prototypes with teacher guidance throughout the activity
	How Re-Taught?

	 Students will revisit the engineering design process throughout future projects, applying what they learned in this activity Students refine their prototypes with teacher guidance throughout the activity
--	--

Strand: Solar Oven Engineering

 Learning Standard: MS-ETS1-1 - Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions. MS-ETS1-2 - Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem. MS-ETS1-3 - Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success. 6.SP.1.c - Analyze Data: Select appropriate graphical methods and numerical measures to analyze data 6-8.DT.2.d. Consider multiple factors, including criteria and constraints, (e.g., research, cost, time, materials, feedback, safety) to justify decisions when developing products and systems to solve problems 	How Taught? - Presentation: <u>Solar Oven Presentation</u> - Students are grouped into teams of 3-4
Materials: Solar Oven Presentation Student documentation Student Data Table	How Assessed? Student documentation Student Data Table How Re-Taught? - Students refine their prototypes with teacher guidance throughout the activity

 Learning Standard: Ohio's Cognitive Demands for Science (pg. 13, table 2) DESIGNING TECHNOLOGICAL/ENGINEERING SOLUTIONS USING SCIENCE CONCEPTS Requires student to solve science-based engineering or technological problems through application of scientific inquiry. Within given scientific constraints, propose or critique solutions, analyze and interpret technological and engineering problems, use science principles to anticipate effects of technological or engineering design, find solutions using science and engineering or technology, consider consequences and alternatives, and/or integrate and synthesize scientific information. MS-ETS1-2 - Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem. MS-ETS1-3 - Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success. 6.NS.5 - Understand that positive and negative numbers are used together to describe quantities having opposite directions or values, use positive and negative numbers to represent quantities in real-world contexts 6-8.ICT.1.b. Select and use digital learning tools or resources to support planning, implementing and reflecting upon a defined task. 	How Taught? - Students are introduced to robotics through this presentation: Introduction to Robotics Presentation - Modeling programming using the Mindstorms Programming App - Students are put into groups of 2-3 to build a driving base robot using Lego Mindstorms EV3 kits
Materials: Introduction to Robotics Presentation Uses for Modern Robots SumoBot Sample Videos	How Assessed? <u>Robot Tasks Level 1</u> <u>Robot Tasks Level 2 and 3</u> <u>Bracket Challenge Score Sheet</u>
Robotics Bracket Challenge EV3 Building Instructions Walking and Flying Robot video	How Re-Taught? - Students are provided feedback and retaught programming skills as they move through the Level 1-3 task sheets

 Learning Standard: Nature of Science Grades 6-8 (source pg. 10) Science is a Human Endeavor Individuals from different social, cultural, and ethnic backgrounds work as scientists and engineers. Scientists and engineers are guided by habits of mind, such as intellectual honesty, tolerance of ambiguity, skepticism and openness to ideas. Scientists and engineers rely on human qualities such as persistence, precision, reasoning, logic,imagination and creativity MS-ETS1-1 - Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions. MS-ETS1-2 - Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem. 6th grade social studies standard: Geographic tools can be used to gather, process and report information about people, places and environments. 	How Taught? Class Intro Slideshow Urban Water Cycle video
Materials: <u>Town Map</u>	How Assessed?
<u>Urban Water Cycle video</u>	Student Water System Budget and Rational Team Presentation Template
Student Water System Budget and Rational	How Re-Taught?

Class Intro Slideshow	- Students are provided feedback from the teacher between individual plans and created a group plan
Team Presentation Template	